NAVAL POSTGRADUATE SCHOOL Monterey, California

INTEGRATION OF THE PRIMARY RECEIVER INTO THE NAVPGSCOL SATCOM SIGNAL ANALYZER

John E. Ohlson
William Rhoades

$$
\text { January } 1980
$$

Project Report
Approved for public release; distribution unlimited
Prepared for: Naval Electronic Systems Command
PME-106-1
Washington, D.C. 20360

Rear Admiral T. F. Dedman Superintendent

Jack R. Borsting Provost

The work reported herein was supported in part by the Naval Electronic Systems Command, PME-106-1.

Reproduction of all or part of this report is authorized. This report was prepared by:

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMEER NPS62-80-005PR 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMEER
4. TITLE (and Subtitle) Integration of the Primary Receiver into the NAVPGSCOL SATCOM Signal Analyzer	5. TYPE OF REPORT \& PERIOD COVERED Project Report
7. AUTHOR(s) John E. Ohlson William A. Rhoades	8. CONTRACT OR GRANT NUMBER(a)
Naval Postgraduate School Monterey, California 93940	10. PROGRAMELEMENT, PROJECT, TASK AREA WORK UNT NUMERS NOOO
```11. Controlling office Name and address Naval Electronic Systems Command PME-106-1 Washington, D.C. }2036```	12. REPORT OATE January 1980 13. NUMGER OF PAGES 121
14. MONITORING AGENCY NAME \& AOORESS(If dilltorent from Controlling Offico)	15. SECURITY CLASS. (ot thio foport)   Unclassified   15a. OECLASSIFICATION/DOWNGRAOING SCHEOULE

16. OISTRIBUTION STATEMENT (Of this Roport)

Approved for public release; distribution unlimited
17. OISTRIBUTION STATEMENT (Of the obatrect ontored in Block 20, If different from Roport)
18. SUPPLEMENTARY NOTES
19. KEY WOROS (Continue on reverse olde if necessary and Idontily by biock number)

## Satellite Communication

20. ABSTRACT (Continue on reverae elde if neceseary and Identify by block number)

Integration of the Primary Receiver into the Naval Postgraduate School SATCOM Signal Analyzer is presented. Circuit modifications and additions to the Primary Receiver, wiring information and operating procedures for the Primary Receiver Control Panel, and software development for system operation are presented in detail.

## ABSTRACT

Integration of the Primary Receiver into the Naval Postgraduate School SATCOM Signal Analyzer is presented. Circuit modifications and additions to the Primary Receiver, wiring information and operating procedures for the Primary Receiver Control Panel, and software development for system operation are presented in detail.

# DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943-5101 

## TABLE OF CONTENTS

I. INTRODUCTION- ..... 11
A. BACKGROUND- ..... 11
B. SPECIFIC GOALS- ..... 12
C. SCOPE OF THIS PROJECT ..... 12
D. APPROACH- ..... 12
II. PRIMARY RECEIVER- ..... 15
A. GENERAL REVIEW- ..... 15
B. ADDITIONS AND MODIFICATIONS ..... 15

1. Receiver Control Circuits ..... 19
2. Manual Gain Control Circuits ..... 19
3. Coaxial Switching ..... 28
4. Lamp Test Circuit ..... 28
5. Additional Amplification- - ..... 28
6. Power Splitter- ..... 31
7. Minor Modifications ..... 31
8. Alignment ..... 31
C. OPERATIONAL TESTS ..... 31
III. RECEIVER CONTROL PANEL C2 ..... 38
A. GENERAL ..... 38
B. CUNTROL PANEL CIRCUIT BOARDS- ..... 38
C. CONTROL PANEL OPERATION ..... 51
9. Receiver Action Buttons ..... 51
10. Satellite Frequency Plan Selection- ..... 51
11. Data Entry Buttons- ..... 51
12. Numerical Entry Buttons ..... 55
13. Option Buttons- ..... 55
14. Indicator Lamps ..... 55
D. $\mathrm{AN} / \mathrm{WSC}-3$ ..... 55
E. CONTROL PANEL TESTING ..... 58
IV. SYSTEM INTEGRATION- ..... 63
A. GENERAI ..... 63
B. CONTROL PANEL TO COMPUTER ..... 63
C. PRIMARY RECEIVER TO COMPUTER- ..... 64
D. CONTROL PANEL TO PRIMARY RECEIVER ..... 69
15. Program Initialization and Access ..... 70
16. First Computer GO TO Statement- ..... 70
17. Frequency Plan Routine- ..... 70
18. Receiver Action Button Routine- ..... 71
19. Data Entry Type Routine ..... 71
20. Numerical Entry Routine ..... 71
21. Enter Routine ..... 72
22. Option Button Routines- ..... 73
E. AUTOMATIC MODE AND SIGNAL ACQUISITION ..... 73
23. Automatic Modes (2ND Computer GO TO) ..... 73
24. Signal Acquisition Routine- ..... 76
V. DATA- ..... 88
A. GENERAL ..... 88
B. DATA PROGRAMS ..... 88
VI. CONCLUSION- ..... 91
APPENDIX A - C2 OPERATING PROGRAM (C20P) ..... 92
APPENDIX B - DATA PROGRAMS ..... 106
APPENDIX C - ACRONYMS AND MNEMONICS- ..... 117
LIST OF REFERENCES ..... 119
INITIAL DISTRIBUTION LIST- ..... 21

## LIST OF FIGURES

1. Primary Receiver System Block Diagram ..... 14
2. Primary Receiver System Interconnections- ..... 16
3. Primary Receiver Block Diagram- ..... 17
4. Primary Receiver Front Panel Layout ..... 18
5. Control Board PLL-11 Schematic- ..... 20
6. Control Board PLL-12 Schematic- ..... 21
7. Control Board PLL-ll Component Layout ..... 22
8. Control Board PLL-12 Component Layout ..... 23
9. Manual Gain Control Schematic ..... 26
10. Manual Gain Control Component Layout- ..... 27
11. IF Bandwidth Coaxial Switching ..... 29
12. Receiver Lamp Test Circuit- ..... 30
13. Receiver Front Panel Wiring ..... 37
14. Control Panel Photograph- ..... 39
15. Control Panel Layout- ..... 40
16. Control Panel Wiring Diagram- ..... 41
17. Control Panel Matrix Board- ..... 43
18. Control Panel Light Board ..... 44
19. Matrix Board Component Layout ..... 45
20. Light Board Component Layout- ..... 46
21. Control Panel Switch Address Identification ..... 49
22. Control Panel Indicator Lamp Identification ..... 50
23. AN/WSC-3 Offset Mode- ..... 60
24. Control Panel to Computer Information Flow- ..... 65
25. Computer to Receiver Information Flow - - - - - - ..... 68
26. C2 Operating Program Flowchart- ..... 78
27. Frequency Plan Routine- ..... 79
28. Receiver Action Routine ..... 80
29. Data Entry Routine ..... 81
30. Number Entry Routine ..... 82
31. Enter Button Routine (Chan) ..... 83
32. Enter Button Routine (Ctr Freq) ..... 84
33. Enter Button Routine (Mode) ..... 85
34. Option Button Routines- ..... 86
35. Acquisition Routine ..... 87
36. Data Taking Subroutine- ..... 90

## LIST OF TABLES

I. Control Board PLL-11 Pin Connections - - - - - 24
II. Control Board PLL-12 Pin Connections - - - - - 25
III. Minor Receiver Modifications - - - - - - - - - 33
IV. J9 Pin Connections - - - - - - - - - - - - 34
V. Jlo Pin Connections ~ - - - - - - - - - - 35
VI. Loop Filter and VCO Augnment Procedures - - - - 36
VII. Matrix Board Pin Connections - - - - - - - - - 47
VIII. Light Board Pin Connections - - - - - - - - - 48
IX. GAPFILLER Frequency Plan- - - - - - - - - - 52
X. FLTSAT Frequency Plan $\quad$ - $-\ldots-\ldots-\ldots-\ldots-\ldots 5$
XI. C2 Button Functions - - - - - - - - - - - - 56
XII. Matrix Board Troubleshooting - - - - - - - - - - 61
XIII. Light Board Troubleshooting - - - - - - - - - - 62
XIV. Primary Receiver Control Data - - - _ - - - 66
XV. Automatic Modes - - - - - - - - - - - - - - 75

This page intentionally blank.

## I. INTRODUCTION

## A. BACKGROUND

This project is part of a series of Radio Frequency Interference (RFI) measurement and analysis projects undertaken by the NAVPGSCOL Satellite Communications Laboratory concerning UHF satellite communications. Previous efforts include evaluation of the AS $3018 / W S C-1(V)$ shipboard antenna \{Ref. I\}, preparation of a shipboard RFI measurement package \{Refs. 2-5\}, evaluation of shipboard RFI \{Ref. 6\}, construction of a shipboard RFI simulator \{Ref. 7\} and measurement of shipboard SATCOM terminal performance in the presence of specific RFI sources \{Refs. 8-10\}.

In March of 1977 , this laboratory received funding from PME l06-1 of NAVELEX to develop, design, and construct a SATCOM Signal Analyzer at NAVPGSCOL. The purpose of this unit is to provide high-speed spectrum analysis and characterization of the outputs of UHF satellite transponders while operating in orbit. Previous efforts toward achieving this purpose include design of a computer system to provide control and signal analysis \{Ref. ll\} and design and construction of SATCOM Analyzer Receivers \{Refs. 12-13\}. This report will present the integration of the Primary Receiver into the SATCOM Signal Analyzer System.

## B. SPECIFIC GOALS

The specific goals in the development of this system are to (1) provide all necessary equipment to make real-time measurements at the Naval Postgraduate School and (2) to provide the necessary research and development of signal analysis techniques and equipment for possible use in a follow-on version of the Fleet Satellite Monitoring System (FSM) presently in use at Naval Communications Stations to monitor GAPFILLER and FLTSAT operations.

## C. SCOPE OF THIS PROJECT

This project consists basically of three parts. First, modification to existing circuits and addition of new circuits as necessary in order to achieve satisfactory operation of the Primary Receiver. Second, complete implementation of the Primary Receiver Control Panel and establish fundamental operating procedures for the control panel. Third, create software as necessary in order to allow remote operation of the Primary Receiver from its control panel. An additional part of step three is for the system to provide a means to use the AN/WSC-3 Receiver at frequencies other than those discrete values for which it was designed.

## D. APPROACH

The SATCOM Signal Analyzer is constructed around an INTERDATA $7 / 32$ minicomputer which provides system control. Other primary units directly related to this report are the

Primary Receiver and the Receiver Control Panel as shown in Figure 1. The problem of integrating these units was approached in three steps as previously outlined. These three steps are covered in detail in subsequent section of this report.

## II. PRIMARY RECEIVER

A. GENERAL REVIEW

The Primary Receiver is a phase-locked loop receiver capable of extremely accurate carrier tracking of the output of UHF communications satellites. Switching within the receiver allows selection of one of five possible IF filter bandwidths and one of three possible phase-locked loops. Each of the phase-locked loops also is capable of operating in one of four possible loop filter bandwidths. The receiver can be operated in either the Normal or Squaring Loop mode. All of these switchable functions (IFBW, VCO, LFBW, N/SQ) can be selected at the front panel of the receiver or from the Receiver Control Panel via the INTERDATA 7/32 computer. The overall system block diagram and the Primary Receiver functional block diagrams are shown in Figures 1,2 and 3 respectively. Figure 4 shows a front panel view of the receiver. The receiver design is covered in detail in References 12 and 13.
B. ADDITIONS AND MODIFICATIONS

In order to provide for remote operation of the receiver and to complete its operational tests in a manner such that design specifications were satisfied, certain circuit additions or modifications were necessary. New circuits or those requiring major modifications are covered in detail below. Minor circuit modifications are tabulated and/or discussed briefly as necessary.

## 50 kHz Ref.


Figure 2 - Prımary Recelver, System Interconnections

Figure 3 - Primary Receiver Block Diagram

Figure 4 - Primary Receiver Front Panel Layout

## 1. Receiver Control Circuits

The control circuits to provide the previously discussed switching functions and automatic operation were developed using SSI and MSI logic circuits. These circuits are implemented on two universal PC boards designated PLLll and PLLI2. The functions being controlled are VCO and Loop Filter Bandwidth, IF Bandwidth, Normal or Squaring Loop, Local or Remote Operation, Reset of VCO. The control boards also provide IN/OUT of lock status information, and control of the front panel indicator lights. The inputs to the control boards come from either the front panel (local operation) or from Control Panel C2 (remote operation). Schematic diagrams and component layouts for the control boards are shown in Figures 5 through 8. Tables I and II list the wiring connections for the boards.
2. Manual Gain Control Circuit

The MGC circuit is constructed on a piece of universal printed circuit board and mounted in the left rear corner of the receiver. The MGC potentiometer is mounted next to the board. The MGC manually sets the operating level of the IF Amp and provides a front panel meter indication of that level as a percentage of the amplifier's capability. The schematic and component layout for the MGC are shown in Figures 9 and 10. The indicator (Ll) and 8 ohm resistors are discussed in other section (II-B-3 and 4) of this report.

Figure 5 - Control Board PLL-ll

Figure 7 －Control Board PLL－ll Component Layout


		$\begin{array}{ll}0 & \Pi \\ 1 & \text { N} \\ \vdots \\ H & \text {－}\end{array}$	


$\begin{array}{cc}N & N \\ -1 & \text { N } \\ \text { U } \\ H & \text { r }\end{array}$	$m$ +1 $u$ $H$	$\infty$ $\bigcirc$ $\sim$	$\xrightarrow{+1}$	ゼ － N゙	$\xrightarrow{n}$	¢ M O － N



7

## TABLE I - PLLII PIN CONNECTIONS

PIN	TO	PIN	TO
1	+5	A	+5
2	$30 \mathrm{KHZ} \mathrm{SW}$.	B	+28
3	$10 \mathrm{KHZ} \mathrm{SW}$.	C	PLL4 "CON"
4	$3 \mathrm{KHZ} \mathrm{SW}$.	D	N/C
5	1 KHZ SW.	E	J9p10, PLL12-3
6	. $2 \mathrm{KHZ} \mathrm{SW}$.	F	PLLI2-4
7	REMOTE SW.	H	J9p32
8	LOCAL SW.	J	N/C
9	NORM SW.	K	PLL4 "CD", J9p3, J9p9
10	SQ. SW.	L	PLL5, 6, 7
11	Sl-1, S2-1	M	+28
12	S1-2, S2-2	N	SQ. LIGHT
13	Sl-3, S2-3	P	NORM LIGHT
14	S3-2, S4-2	R	REMOTE LIGHT, Jlopl
15	S3-3, S4-3	S	LOCAL LIGHT, Jl0p3
16	S3-1, S4-1	T	UNLOCK LIGHT, Jl0p5
17	N/C	U	LOCK LIGHT, Jl0p7
18	N/C	V	J9pl6
19	N/C	W	J9pl7
20	N/C	X	J9p18
21	N/C	$Y$	J9pl9
22	GND	Z	+28, +5 RET

## TABLE II - PLLl2 PIN CONNECTIONS

FROM	TO	FROM	TO
1	+5	A	+5
2	N/C	B	PLL5, 6, $7-K 3$
3	PLLIl-E	C	VC02-3 LIGHT
4	PLL」l-F	D	VC02-10 LIGHT
5	J9p35	E	VCO2-30 LIGHT
6	J9p34	F	VCO2-100 LIGHT
7	N/C	H	VCOI-. 3 LIGHT
8	VCO1-.3/VC02-3/VC03-10	J	VCO1-1 LIGHT
9	VCO1-1/VC02-10/VC03-30	K	N/C
10	VC01-3/VC02-30/VC03-100	L	$+28$
11	VC01-10/VC02-100/VC03-300	M	VCOl 3 LIGHT
12	ALL VC0 3	N	VCO1 10 LIGHT
13	ALL VC02	P	VCO3 10 LIGHT
14	ALL VCOl	R	PLL9 (Sl)
15	N/C	S	PLL9 (S0)
16	N/C	T	VC03-30 LIGHT
17	N/C	U	VC03-100 LIGHT
18	N/C	V	VC03-300 LIGHT
19	N/C	W	N/C
20	J9p37	X	PLL5, 6, 7-K1
21	J9p36	Y	PLL5, 6, 7-K2
22	GND	Z	GND


Figure 9 - Manual Gain Control

Figure 10 - MGC Board Component Layout
3. Coaxial Switching

As previously covered, the coaxial switch operation is handled by the control circuits. The indicators for IF bandwidth are operated through the coaxial switches as shown in Figure ll. The additional indicator (Ll), which is physically on the MGC board, is added to show when the switching has taken place (i.e., if $L 1$ is $O N$ then $S 1, S 2, S 3$, and S4 have switched to the appropriate position). This was done to eliminate any doubt about whether or not a switch was at fault when troubleshooting.

## 4. Lamp Test Circuit

A lamp test switch was installed on the front panel of A6 in order to monitor the indicators for failure. This switch has to do two things. First, it must interface with the existing IFBW coaxial switching and indicator circuit, and second, it must interface with the lamp drivers on the control boards. The circuit used to accomplish this is shown in Figure l2. Due to the current surge when testing all lamps, current limiting resistors were added to the 28 volt supply line. These resistors are physicaमly located on the MGC board (R1, R2, R3). The steering diodes used with the IFBW switches are mounted on the respective switches.

## 5. Additional Amplification

Initial tests showed that the received signal level at the hard limiter was not sufficiently high to saturate the hard limiter. For this reason, another stage of amplification


was added at the IF level. The amplifier used is a WatkinsJohnson model number 6200-352 which provides an additional 28 db of gain. A second additional amplifier ( 12 db ) was added in the $R F$ group for the same reason.
6. Splitter

An Anzac THV-50 power splitter was added immediately following the first mixer in order to provide a second input path to the AN/WSC-3 Receiver. By properly processing any input signal, it can be converted for use on one of the WSC-3 channels. Thus, the WSC-3 can now be used to demodulate a signal which was originally not transmitted at one of the WSC-3 channel center frequencies.
7. Minor Modifications

Other minor modifications to the existing receiver circuits are tabulated in Table III. Tables IV and V list the pin connections for back panel plugs J9 and Jlo respectively. These plugs provide the interconnections to control panel C2 and the Interdata computer. Figure 13 is a wiring diagram for the front panel.
8. Alignment

The LFBW and VCO alignment is outlined in Table VI.
C. OPERATIONAL TESTS

All switching functions and the ability to lock on and track a received signal were tested and found to be satisfactory. A test scheme was developed and used to verify the
actual bandwidth using the various loop filter and IF filter combinations. The results of the tests showed the actual bandwidth to be very near the selected bandwidth. A computer simulator was used to test the remote operation capability of the control circuits. Again the results of the test were satisfactory.

At this point the receiver was judged complete and operating as designed. Therefore, the project moved to step two, the Primary Receiver Control Panel (C2).

PC BOARD	MINOR MODIFICATIONS
ALL	Add power supply filter capacitors as necessary.
PLL 1	Change Rl to 20 K pot. for meter adjust.
PLL 2	Change $R 9$ to 5 K pot. for meter adjust. Change R3 to $4.7 \mathrm{~K}, \mathrm{R} 4$ to 39 and R5 to 1.8 K due to design error.
PLL 3	Change $R 5$ to 5 K pot. for meter adjust. Change R3 to $4.7 \mathrm{~K}, \mathrm{R} 4$ to 39 and R 5 to 1.8 K due to desing error. Remove $R 7$ and replace with short.
PLL 5, 6, 7	Add power to Pin 13 of İC2.
PLL 9	GND enable on ICl. Change Rl to 1 K and R2 to 510. Individually GND each VCO and bypass each VCO PS connection.
Front Panel	Change AUTO button to read REMOTE. Change MAN button to read LOCAL.
PLL 2, 3	Add .l ufd capacitor between wiper arm of Pl and GND

## TABLE IV - J9 PIN CONNECTIONS

PIN	FROM	TO	
1	$+5 \mathrm{RET}$	$+5 \mathrm{RET}$	
2	N/C		
3	PLLIl-K	OP.BD.A SATNO	
4-8	N/C		
9	PLIIl-K	OP.BD.A	SIN 050
10	PLLIl-E, PLLI2-4	OP.BD.A	SIN 070
11-15	N/C		
16	PLLll-V	OP.BD.A	DOT 060
17	PLIll-W	OP.BD.A	DOT 040
18	PLLII-X	OP.BD.A	DOT 020
19	PLIll-Y	OP.BD.A	DOT 000
20	$+5 \mathrm{RET}$	+ 5 RET	
21-31	N/C		
32	PLLII-H	OP.BD.A	COT 070
33	N/C		
34	PLLI2-6	OP.BD.A	DOT 070
35	PLL12-5	OP.BD.A	DOT 050
36	PLLI2-21	OP.BD.A	DOT 030
37	PLLI2-20	OP.BD.A	DOT 010
38-49	N/C		
50	$+5$	$+5$	

## TABLE V - JIO PIN CONNECTIONS



1. Connect oscilloscope to the output terminals of the appropriate board (PLL 5,6or7).
2. Place the loop filter board input switch in the 'SHORT' position.
3. Place the loop filter board integrating capacitor switch in the 'SHORT' position.
4. Observe oscilloscope and adjust $P l$ for $a$ vdc level at the output of the loop filter board.

VCO ALIGNMENT (PLL 9)

1. Short the input to the VCO to be aligned (VCO 1,2,or3) by shorting the output of the appropriate loop filter board (PLL 5, 6 or 7). DO NOT SHORT ACROSS R2 AT THE VCO INPUT.
2. While observing the HP frequency counter (immediately below the receiver) adjust the VCO rest frequency to 950 kHz . PLL 9 must be removed and turned upside down to make this adjustment.


## III. RECEIVER CONTROL PANEL C-2

A. GENERAL

The receiver control panel (C2) is located in equipment rack 8 and is made up of fifty-four momentary pushbutton switches and indicators. Its purpose is to allow remote operation of the Primary Receiver (A6) from the operator's console. The control panel duplicates all of the receiver front panel controls and in addition it provides for selection of a satellite, channel number or center frequency, and mode of operation of the system. The panel layout is shown in Figures 14 and 15. Figure 16 is a wiring diagram for the panel.
B. CONTROL PANEL CIRCUIT BOARDS

There are two circuit boards associated with the control panel. They are the Matrix Board which establishes a unique address for each control panel switch and the Light Board which drives the control panel indicators. The general design concept for these is covered in Reference ll. The schematics for these circuits are shown in Figures 17 and 18. Figures 19 and 20 show the component layout and Tables VII and VIII the pin connection for the circuit boards. Figure 21 shows the switch addresses generated by the Matrix Board and Figure 22 identifies the associated indicator lamps.



Figure 16a - Control Panel Wiring Diagram (Upper)

Figure 16b - Control Panel Wiring Diagram (Lower)


Figure 17 - Control Panel Matrix Board


Figure 18 - Control Pane 1 Light Board








IC-11


IC-10
7493

Figure 19
Figure 20 - Control Panel Light Board Component Layout

```
TABLE VII - MATRIX BOARD PIN CONNECTIONS
```

Pin
A
B
C

D

E

F

H
J
K

L

M
N

P

R
S
$T$
U
V

Opposite Side (Top)
1-18

## Function

$+5 \mathrm{v}$
$+5 \mathrm{v}$
N/C
SATNO
SIN 040
CMD 070
N/C
N/C
N/C
DIN 070
DIN 040
DIN 060
DIN 050
DIN 010
DIN 030
DIN 020
+5 v
$+5 \mathrm{v}$

Ground

TABLE VIII - LIGHT BOARD PIN CONNECTIONS

Pin	Function
1	$+28 \mathrm{v}$
2	+28 v
3	+5 v
4	+5 v
b	N/C
6	DOT 000
7	DOT 010
8	DOT 020
9	DOT 030
10	DOT 040
11	DOT 050
12	DOT 060
13	DOT 070
14	DAGO
15	CMD 070
16	N/C
17	N/C
18	N/C
Opposite Side	
A-V	Ground

HIGH ORDER

	0	1	2	3	4	5	6	7
G	NORM	SQUARE						
F	PANEL ON	PANEL OFF	VCO   RESET	$\begin{aligned} & \text { ENTRY } \\ & \text { REQD } \end{aligned}$				
E	0.2	1	3	10	30			
D	10	30	100	300				
C	3	10	30	100				
B	0.3	1	3	10				
A	GAP	A	B	C	1	2		

Figure 22 - Control Panel Indicator Lamp Identification

## C. CONTROL PANEL OPERATION

The purpose of control panel C 2 is to provide a remote control location, at the SATCOM Signal Analyzer operator's console, for control of the Primary Receiver (A6). The control panel buttons are grouped into six catagories with the following functions: (1) reciever action, (2) satellite frequency plan selection, (3) type of data to be entered, (4) numerical data entry, (5) options, and (6) operator information indicators.

## 1. Receiver Action Buttons

There are nineteen buttons in this category and their sole purpose is to duplicate the receiver front panel controls. This is done by providing the appropriate control data, via the computer, to PLLll and PLLl2 of the receiver.
2. Satellite Frequency Plan Selection

There are six buttons of this type whose purpose is to choose a predetermined frequency plan. Four of these buttons are functional, the other two are for future use only. The frequency plans currently in use are shown in Tables IX and $X$.

## 3. Data Entry Buttons

These three buttons specify what type of numerical data is about to be entered. They are used in conjunction with the Numerical Entry Buttons and have no real meaning if used alone. The possible data types are a channel number, frequency, or mode of operation.

## TABLE IX - GAPFILLER FREQUENCY PLAN

Channel	Uplink	Downlink
1	302.450	248.850
2	302.475	248.875
3	302.500	248.900
4	302.525	248.925
5	302.550	248.950
6	302.575	248.975
7	302.600	249.000
8	302.625	249.025
9	302.650	249.050
10	302.675	249.075
11	302.700	249.100
12	302.725	249.125
13	302.750	249.150
14	302.775	249.175
15	302.800	249.200
16	302.825	249.225
17	302.850	249.250
18	302.875	249.275
19	302.900	249.300
20	302.925	249.325
A	307.750	254.150
B	311.150	257.550

## TABLE X - FLTSAT FREQUENCY PLAN

Channel	Plan	Uplink	Downlink
1	A	SHF	2 b0. 45
	B	Spread Spectrum	250.55
	C		250.65
2	A	292.95	251.95
	B	293.05	252.05
	C	293.15	252.15
3	A	294.65	253.65
	B	294.75	253.75
	C	294.85	253.85
4	A	296.35	255.35
	B	296.45	255.45
	C	296.55	255.55
5	A	297.95	256.95
	B	298.05	257.05
	C	298.15	257.15
6	A	299.45	258.45
	B	299.55	258.55
	C	299.65	258.65
7	A	306.35	265.35
	B	306.45	265.45
	C	306.55	265.55
8	A	307.85	266.85
	B	307.95	$266.95$
	C	308.05	$267.05$
9	A	309.25	268.25
	B	309.35	268.35
	C	309.45	268.45
10	A	310.75	269.75
	B	310.85	269.85
	C	310.95	269.95
11	A	317.045	
	B	317.145	244.045
	C	317.245	244.145
12	A	317.055	
	B	317.155	244.055
	C	317.255	244.155


Channel	Plan	Uplink	Downlink
13	A	317.060	243.960
	B	317.160	244.060
	C	317.260	244.160
14	A	317.065	243.965
	B	317.165	244.065
	C	317.265	244.165
15	A	317.070	243.970
	B	317.170	244.070
	C	317.270	244.170
16	A	317.075	243.975
	B	317.175	244.075
	C	317.275	244.175
17	A	317.080	243.980
	B	317.180	244.080
	C	317.280	244.180
18	A	317.085	243.985
	B	317.185	244.085
	C	317.285	244.185
19	A	317.090	243.990
	B	317.190	244.090
	C	317.290	244.190
20	A	317.095	243.995
	B	317.195	244.095
	C	317.295	244.195
21	A	317.100	244.000
	B	317.200	244.100
	C	317.300	244.200
22	A	317.110	244.010
	B	317.210	244.110
	C	317.310	244.210
23	A	294.200	260.600
	B	295.300	261.700
	C	295.900	262.300

4. Numerical Entry Buttons

There are fifteen buttons in this group (includes decimal point, clear entry, enter, A and B). After the data type is specified, these buttons are used to enter the actual data.
5. Option Buttons

There were originally four option buttons on the panel to be used for "unforseen needs". These have all been used and function as the "Panel On Control", "Panel Off Control", "VCO Reset", and "Entry Required" indicator.
6. Indicator Lamps

In addition to the switches on the control panel,
there are seven operator information indicators. These are used to prompt the operator to take some action or merely to provide him with some necessary information.

A detailed description of each button and indicator and its function is contained in Table XI.
D. $\mathrm{AN} / \mathrm{WSC}-3$

The source of signal input to the AN/WSC-3 Receiver (used in a different section of the Satellite Communications Monitoring System) is selected at the $C 2$ panel. In the "NORMAL" case, the signal goes from antenna to RF group to WSC-3. This is done when the received signal is at one of the WSC-3 channel frequencies. •If the received signal is not directly on a WSC-3 channel frequency, and the WSC-3 is to be used,

Group	Name	Number	Function
1	VC01-ALL	13-16	Send control data to A6
1	VC02-ALL	24-27	to select VCO and LFBW.
1	VC03-ALL	34-37	Light appropriate lamps on $C 2$ and $A 6$.
1	IFBW-ALL	38-42	Send control data to A6 to select IFBW. Light appropriate lamp on C2 and A6.
1	NORMAL	28	Send control data to A6
1	SQUARE	29	to select Loop Type. Light appropriate lamp on C2 and A6.
2	GAP	00	Specify appropriate fre-
2	A	01	quency plan and light the
2	B	02	lamp on C 2 .
2	C	03	
2	1	04	Not used.
2	2	05	Not used.
3	CHAN	06	Specifies that subsequent numerical entry will be a channel number to be used with selected frequency plan. Light 'Entry Req'd' on C2.
3	CTR FREQ	07	Specifies that subsequent numerical entry will be a frequency in MHz. Light 'Entry Req'd' on C2.
3	MODE	08	Specifies that subsequent numerical entry will designate a preset mode of operation. Light 'Entry Req'd' on C2.

```
TABLE XI - C2 BUTTON FUNCTIONS (con't)
```

Group	Name	Number	Function
4	All numbers letters and decimal	$\begin{aligned} & 09-12 \\ & 17-23 \\ & 30-31 \end{aligned}$	Load the value of the button in a register.
4	CLEAR ENTRY	32	Load zeros in the number register.
4	ENTER	33	Based on which Data Entry was pushed, act accordingly on the contents of the numerical entry register.
5	PANEL ON	43	Enable control panel C2. Light the lamp on C2.
5	PANEL OFF	44	Disable control panel C2. Light the lamp on C 2 .
5	VCO RESET	45	Send control data to A6 to short the VCO integrating capacitor.
6	ENTRY REQ'D	NA	Prompt operator that further entries are needed.
6	IN	NA	A6 locked on signal.
6	OUT	NA	A6 not locked on signal.
6	REMOTE	NA	A6 control at C 2.
6	LOCAL	NA	A6 control at A6.
$\begin{aligned} & 6 \\ & 6 \end{aligned}$	NORMAL   OFFSET	$\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$	Indicates source of input to AN/WSC-3.

the signal must be converted to a usable frequency. This conversion is accomplished by the Primary Receiver local oscillator. Thus, in the "OFFSET" case, the received signal goes from antenna to $R F$ group to down converter to up converter (receiver A6) to WSC-3. The properly converted signal can now be demodulated by the AN/WSC-3. Figure 23 shows a simplified block diagram of this system. Note that the WSC-3 OFFSET mode and normal operation of the Primary Receiver cannot occur simultaneously.
E. CONTROL PANEL TESTING

The Matrix Board generation of switch addresses, status, and interrupt signals was tested with satisfactory results. Future tests for proper operation should check the following: (1) Proper address (see Figure 2l) for the depressed button is generated at IC3 and 4 ; (2) Status pulse is generated at ICl6 pin 8 each time a button is pushed; (3) SATNO interrupt pulse is generated at ICl6 pin 11 each time a button is pushed. Failure of any one of the above indicates improper operation of the Matrix Board and reference should be made to the troubleshooting guide in Table XII.

The Control Bus Test Panel (bottom of equipment rack 15) was used to test the Light Board. The test panel provided simulated computer data to the Light Board and all lighting tested satisfactory. Future tests using the Control Bus Test Panel should proceed as follows: (1) Strobe (up/down)

SCLRO; (2) Set in the address of the Light Board on data out switches; (3) Strobe ADRSO; (4) Set data out switches to 0100 0000; (5) Strobe CMD; (6) Use data out switches to set up lights (data out 0 corresponds to Light Board column 1) and DAO to clock the data to $C 2$. In case of improper operation refer to troubleshooting guide Table XIII.

On completion of these tests, the project proceeded to step three, interfacing of equipment.


## TABLE XII - MATRIX BOARD TROUBLESHOOTING

## Symptom

Address lines L-T not sweeping.

High order lines ( $R-T$ )
not sweeping, but low order (L-P) OK.

Low order lines (L-P) not sweeping, but high order (R-T) OK.

No pulse generated at ICl6p8 when button depressed.

No pulse generated at ICl6pll when button depressed.

Improper address being generated.

Depress button doesn't stop sweeping of address lines (L-T)

No clock pulse.

## Check

1. Button depressed.
2. Shorted switch or wiring.
3. Clock (ICl4) stopped.
4. Check ICl3p6. If clocking then problem limited to IC2, 3, 4. If not clocking check IC6, 7, 8, 9, 10, 11, 13.
5. +5 supply.

ICl and 3.

IC2 and 4.

1. IC9 and 16 .
2. CMD 070 state must be low.
3. Address generating circuits.
4. IC8, 9, 12, 15, 16.
5. CMD 070 state must be low.
6. Address generating circuits.
7. If high order error check ICl, 3, 5, 6.
8. If low order error check IC2, 4, 5, 6.

IC5, 6, 9, 10, 11, 13

1. Loss of +5 v
2. ICl4.

## TABLE XIII - LIGHT BOARD TROUBLESHOOTING

## Symptom

Lamp test inoperative.
Any single light out.
One or more of the following lights out:

GAP, VCOl-1.3, VCO2-3, VC03-10, 0.2, PNLON, NORM.

A, VCOl-1, VCO2-10, VCO3-30, 1, PNLOFF, SQUARE.

B, VCO3-100, 3, VCO RESET. ICl, 2, 3, 6, 14.
C, VCOl-10, VCO2-100, VC03-300, 10, ENTRY REQ'D.

AUX 1, 30 .
AUX 2.
All lights on.
All lights off.

## Check

Loss of 28 v supply.
Lamp test for bad bulb.

ICl, 2, 3, 4, 12

ICl, 2, 3, 5, 13.

ICl, 2, 3, 7, 15.

ICl, 2, 3, 8, 16 .
ICl, 2, 3, 9, 17.
+28 v to drivers grounded.

1. ICl, 2, 3,.
2. Loss of +5 v .
A. GENERAL

With the Primary Receiver (A6), Control Panel (C2), and the associated cabling and hardware interfacing complete, the next step was to develop the necessary software to cause these units to work together through the INTERDATA 7/32 Computer.

The main concern of this report was the creation of the Control Panel Operating Program. This program was developed in FORTRAN and is contained in Appendix $A$ of this report. The individual driver programs for each piece of equipment (Primary Receiver, Control Panel, and Local Oscillator) were developed separately and will therefore not be covered in detail in this report.
B. CONTROL PANEL TO COMPUTER

The Control Panel to Computer interface is handled by the driver program, PANELll, contained in reference 15. This driver performs two major functions. First, when a button on the control panel is pushed the driver reads the address generated by the Matrix Board. It then translates that address from its hexadecimal coded form (see Figure 2l) to a decimal number to be used by the Control Panel Operating Program. Second, it performs the necessary logic to light the appropriate lamp on the control panel. The logic takes two forms: (1) if light $X$ is on then light $Y$ must be off,
and (2) only one light in rows $A, B$, and $C$ can be on at any given time. These steps set and clear the appropriate bits in the lamp matrix (see Figure 22) and then the status of all lamps is updated simultaneously. A simplified block diagram of this is shown in Figure 24.
C. PRIMARY RECEIVER TO COMPUTER

The Primary Receiver to Computer interface is handled by the driver programs PRCVRll and FLUKEll contained in reference 14.

The receiver driver (PRCVRII) supplies control data to the receiver to determine selection of VCO and LFBW, IFBW, Normal or Squaring Loop, and VCO Reset. The control data pertaining to selection of these items is detailed in Table XIV. Note that DATA OUT bits $1,3,5$, and 7 apply to the VCO and LFBW; bits 0,2 , and 4 apply to IFBW; bit 6 applies to Normal or Squaring Loop. Additionally, this driver provides status information to the computer about the receiver. It provides status on "IN" or "OUT" of lock and "LOCAL" or "REMOTE" operation for use by the Control Panel Operating Program.

The local oscillator driver (FLUKEl1) provides control data to the receiver local oscillator (Fluke 6l60B) to establish its frequency of operation.

A simplified block diagram of the Primary Receiver to Computer information flow is shown in Figure 25.


$$
\begin{gathered}
\text { Figure } 24 \text { - Control Panel to Computer } \\
\text { Information Flow }
\end{gathered}
$$

TABLE XIV - PRIMARY RECEIVER CONTROL DATA

## VCO and LFBW

Select		Data Out Bits			
		010	030	050	070
VC01	. 3	L	H	H	H
	1	L	H	H	L
	3	L	H	L	H
	10	L	H	L	L


VC02	3	H	L	H	H
10	H	L	H	L	
30	H	L	L	H	
	100	H	L	L	L


VC03	10	$H$	$H$	$H$	$H$
	30	$H$	$H$	$H$	L
100	$H$	$H$	L	H	
300	$H$	$H$	L	L	

```
TABLE XIV - PRIMARY RECEIVER CONTROL DATA (con't)
```

IF BANDWIDTH

Select	Data Out Bits		
	000	020	040
.2 KHz	H	L	H
1 KHZ	H	L	L
3 KHz	L	H	H
10 KHz	L	H	L
30 KHz	L	L	H

## NORMAL/SQUARING LOOP

Select	Data Out Bit
	060
Normal	L
Squaring	H

VCO RESET

Pulse Command Line 070


Figure 25 - Computer to Receiver Information Flow

## D. CONTROL PANEL TO PRIMARY RECEIVER

The Control Panel to Receiver interface is handled by the Control Panel Operating Program (C20P) and the previously discussed equipment drivers (PANELIl, PRCVRll, and FLUKEll). This program was broken into two major sections. The first section was to provide a manual or "Mode 0 " method of operation where the control panel duplicates the receiver front panel. The second section was to provide for multiple automatic modes of operation which preselect the receiver set-up, acquicition scheme, and method of data handling. These two sections were approached with the thought that an operable manual system could then be used to provide the preselected receiver set-up for the automatic modes. Thus, the basic program was created for the manual mode with provisions included for subsequent a-dition of the automatic modes as necessary.

The fundamental concept used in developing the program was that the control panel buttons could be categorized into the six groups listed in Table XI and a separate routine written to handle each of the groups. This idea is outlined in the simplified flow chart shown in Figure 26. Detailed flow charts for the entire program are shown in Figures $27-$ 35. Each of the six main subsections as well as other aspects of the Control Panel Operating Program are discussed in detail below.

1. Program Initialization and Access

Initially there was only one means of accessing the C2OP program; that was by pushing a button on $C 2$. With the acquisition scheme added, there will be a second means of access, the IN/OUT of lock status of the receiver. For either of these to access the program, the receiver must be in the REMOTE mode of operation. The control panel button means of access (NBUT) must first pass a test for valid entry, and is then used in a computed GO TO statement to trigger the appropriate routine. The second method, the IN/OUT of lock status of the receiver, is used to access the acquisition scheme. This will be covered in more detail in a later section.

When the program is initialized, all flags are cleared and all lights turned off with the exception of the PANEL OFF light. Thus, the control panel is initialized in the OFF or LOCKED-OUT condition. The only button which can be used initially is the PANEL ON button.
2. First Computer GO TO Statement

Once initialized and running, the program can be accessed by any control panel button which passes the valid entry tests (see Figure 26). This button entry (NBUT) is then processed by the computed GO TO statement which determines the routine applicable to that button.
3. Frequency Plan Routine

Entry of one of the frequency plan buttons specifies
a column in the data matrix known as IFREQ. This button, used in conjunction with a channel number entry, will select a unique frequency (see Tables IX and $X$ ) in the IFREQ matrix. In addition to selecting the matrix column, this routine also lights the appropriate control panel lamp. See Figure 27.
4. Receiver Action Button Routine

These buttons pertain to selection of VCO, LFBW, and NORM/SQ loop. On entry of one of these buttons this routine will cause the appropriate control bit stream (from data array IDOT) to be sent to the Primary Receiver to cause a configuration change. A receiver action button entry is only allowed when in the Manual or Mode $O$ condition. This routine also lights the appropriate lamp on control panel c2. See Figure 28.
5. Data Entry Type Routine

An entry of this type (CHAN, CTR FREQ, MODE) is used to SET/CLEAR flags and clear counters in preparation for handling the subsequent numerical entry. This routine also lights the ENTRY REQ'D lamp to remind the operator that a numerical entry is required. See Figure 29.

## 6. Numerical Entry Routine

These entries are used in conjunction with the DATA ENTRY TYPE buttons to specify the actual data to be entered. The actual data is stored in NMBR. NMBR can be a channel number, a frequency in megahertz, or a mode designation. This routine is also used to clear or zero NMBR (clear entry)
and to increment the decimal point counter (N) if a decimal entry is made. Numerical entries are only valid when preceeded by a DATA ENTRY TYPE. Otherwise, they are ignored. There are no lights operated by this routine. See Figure 30.

## 7. Enter Routine

This routine is the heart of all data entries. The previously made entries to specify data type and numerical value can be thought of as "setting-up" for use of the ENTER button. This routine determines what type of data has been entered, exactly what the data value is, and what to do with the data. In the case of a channel or frequency entry the data is sent to the local oscillator driver. A mode entry is used to select the routine for the desired automatic mode by means of a computer GO TO. Additionally, if a channel or frequency entry is being made, and the system is in one of the automatic modes, this routine will be used to activate the appropriate acquisition scheme.

When in an automatic mode, entry of a channel number or frequency turns off the control panel when the routine has been completed. Since this is normally the last entry made at the control panel, this is done to prevent any subsequent accidental entries which might disrupt an operation in progress. More details on the automatic modes and acquisition are covered in a later section. The flow chart for this routine is shown in Figures 31,32 and 33.
8. Option Button Routines

Each of the four option buttons has a separate routine. The PANEL ON routine merely turns off the PANEL OFF light and turns on the PANEL ON light. It also sets the PNLON flag. Likewise, the PANEL OFF routine clears the PNLON flag and handles the lights appropriately. The VCO RESET routine does two things. It sends a control data stream to the Primary Receiver to reset (zero) the VCO control voltage and it blinks the VCO RESET lamp on the control panel. The ENTRY REQ'D button is used as an indicator only. Pushing the button causes no noticeable action. The flowcharts for these routines are shown in Figure 34.

The routines detailed above completed the steps necessary to duplicate the receiver front panel operation at the control panel. Details concerning the automatic modes of operation and signal acquisition are covered in the following section.
E. AUTOMATIC MODES AND SIGNAL ACQUISITION

Selection of an automatic mode (a mode other than 0 ) causes the signal acquisition scheme to be brought into use also; therefore, these routines will be covered together.

1. As previously discussed in Section IV-D, the program allows for selection of various modes of operation. The term MODE, as used here, specifies a preset receiver operating set-up and a particular signal acquisition scheme. The number
of possible modes is unlimited; however, only three (modes 1 , 2, and 33) have been included for demonstration purposes. See Table XV.

As shown in Figure 33, if Mode 1 or 2 (or any future value) is selected it is handled by a computed GO TO statement which initiates the appropriate routine. The preset routine will set the receiver steady-state VCO and LFBW, IFBW, Normal or Squaring Loop, and satellite frequency plan as well as lighting the appropriate lamps on the control panel. It also sets values for acquisition parameters pertaining to step-size (ISTEP), step-rate (IDLAY), and loop bandwidth. The operator must then enter the desired channel number or frequency at which time the acquisition routine will be initiated.

If Mode 33 is selected, the entry is handled by the Mode 33 routine. This routine turns off all control panel lamps associated with the Primary Receiver as it is no longer in use. The routine also sets a flag (Mode 33) in insure proper calculation of the local oscillator frequency for use with the AN/WSC-3.

It is anticipated that further automatic modes will be needed in the future. Their inclusion in the program requires only the following minor modifications: (1) Expand the "2ND Computer GO TO" to include the additional mode; and (2) Modify the test for illegal modes so that it will now allow the new mode. The routine for the new mode can now be inserted as a

## TABLE XV - AUTOMATIC MODES

1

VCO - 1
S/S LFBW - 3 Hz ACQ. LFBW - 10 Hz IFBW - 3 kHz IDLAY - 2000 N/SQ - Squaring Freq. Plan - GAP ISTEP - 5 Hz

VCO - 2
S/S LFBW - 10 Hz ACQ. LFBW - 100 Hz IFBW - 1 kHz IDLAY - 3000 N/SQ - Squaring Freq. Plan - FLTSAT B ISTEP - 50 Hz

Set LO for AN/WSC-3 use Control Lights

Stop Program

NOTE:
S/S LFBW---Steady-state loop bandwidth VCO--------Voltage controlled oscillator ACQ. LFBW--Loop bandwidth during acquisition IFBW-------Intermediate frequency bandwidth N/SQ-------Normal or squaring loop operation ISTEP------LO step size during acquisition IDLAY------Delay(MSEC) between steps during acquisition
block following the previously last automatic mode routine.
Future probable additional functions of the automatic mode will be to preset the data taking or count interval and local oscillator step rate when in acquisition. The automatic mode routine can also be used to select whether to plot data, store data, or both.

## 2. Signal Acquisition Routine

The purpose of this routine is to cause the receiver to search for a signal whenever one of the following conditions occurs: (1) A new channel number is selected; (2) A new center frequency is selected; (3) A previously "LOCKED-ON" signal is lost. This search is accomplished by first setting the receiver to a wider LFBW and then stepping the local oscillator through a given range around the selected frequency. Throughout the search, periodic sampling of the receiver IN/OUT status (ISTAT) is done to note when acquisition occurs.

If the search is completed without acquisition, the routine will cause the 'ENTRY REQD' light to blink five times, thereby notifying the operator. During the acquisition routine, the local oscillator will be stepped through the given range of searched frequencies ten times or until stopped either by locking on a signal or by operator interaction. The operator may cancel this search and end acquisition at anytime by making any button entry at the control panel. At this time, acquisition will not be restarted except through
the normal sequence of entries (i.e. a new channel number or center frequency is entered). If acquisition does occur, this routine will then cause the receiver to return to the desired steady-state LFBW for the selected mode.

A flowchart for the acquisition routine is shown in Figure 35. The step size (ISTEP) and step rate (IDLAY) used in the program were chosen for test purposes only and can be adjusted to suit operational conditions as necessary. The currently selected step size is 5 Hz for Mode 1 and 50 Hz for Mode 2. In the program these step sizes are specified in tenths of Hertz as are all of the local oscillator frequencies. The step rate (delay time between steps) currently in use is 2 seconds for Mode 1 and 3 seconds for Mode 2.

The search routine first increases the local oscillator frequency by going through 5 step-up and delay increments, then decreases the frequency by going through 10 step-down and delay increments, and then back up by 5 again returning to the original frequency. Thus, one search cycle requires 40-60 seconds. In operational use, search times will be much shorter.


Figure 26 - C2 Operating Program Flowchart


Figure 27 - Frequency Plan Routine


Figure 28 - Receiver Action Routine


Figure 29 - Data Entry Routine


Figure 30 - Number Entry Routine


Figure 31 - Enter Button Routine (CHAN)


Figure 32 - Enter Button Routine (CTR FREQ)


Figure 33 - Enter Button Routine (MODE)



Figure 35 - Acquisition Routine

## V. DATA

## A. GENERAL

In the future, the $C 20 \mathrm{p}$ program will also include a data taking capability. That is, the ability to read the HP frequency counter (A7) and transfer this data to either a display or storage device. Presently, when the program has completed handling an interrupt from either the receiver or control panel, it goes into a "wait" (Call KTLWAT) or dormant state until the next interrupt occurs. When data taking is added to the program, instead of returning to a dormant condition on completion of handling an interrupt, the program will go into a data taking loop. On sebsequent interrupts, it will discontinue data taking, handle the interrupt, and return to data taking. The statements needed to accomplish this sort of loop are already included in the C20P program as comments (Call A6DATA and GO to 6).

## B. DATA PROGRAMS

Appendix $B$ of this report contains a copy of a subroutine (A6DATA), currently being tested to handle the data taking capability of the program, and a copy of the stand alone program from which it was condensed (A6DAT). The called subroutines and the HP 9830A DATA LINK program are also included in Appendix B. The DATA LINK program and subroutines HPCMD and HPDATA are covered in reference 14.

The A6DATA subroutine requires interfacing the INTERDATA
$7 / 32$ computer with a Hewlett Packard model 9830A calculator. Timing problems were experienced in attempting to get these equipments to operate together. These timing problems, at present, preclude the possibility of adding the data taking feature to C20P. The HP 9830A is presently used to manage the IEEE 488 data bus through which the frequency counter provides its data. A modification to the INTERDATA $7 / 32$, to be made in the near future, will allow it direct control of the IEEE 488 bus and eliminate the need for the HP calculator. Therefore, further efforts toward eliminating the current timing problems are considered inappropriate. However, when the appropriate subroutine is developed, it may be added to C20P by merely deleting the Ca1l KTLWAT statement and adding the Call A6DATA and GO TO 6 statements.

Figure 35 shows a flowchart for the subroutine A6DATA.


Figure 35 - Data Taking Subroutine

## VI. CONCLUSION

The necessary circuit modifications and additions to the Primary Receiver have been installed and tested and the receiver is operating as designed. The Primary Receiver Control Panel installation has been completed and a computer program developed to allow receiver operation from this control panel. The control panel operating program has been tested, debugged, and operationally demonstrated.

With the exception of the data taking capability, the integration of the Primary Receiver into the NAVPGSCOL SATCOM Signal Analyzer is complete.

APPENDIX A - C2 OPERATING PROGRAM (C20P)

THIS PROGRAM INTERFACES THE CZ CONTROL PANEL WITH THE AG RECEIVER AND ITS L.O.

```
 ADORESS INTRPT
 LOGICAL PNLON, DATENT, MODEO,DPT,MODE33
 DIMENSION IDOT(32),NVAL(31),IFPEQ(24,4)
 DATA IDOT/X'240', ''241', x'244', x'245',7* ''000', X'210',
C ('211', x'214', x'215', ('300', x'302',4*x'000', x'200',
c x'201', ('204', x'205', x'120', x'123', x'180', x'188',
C X'1AO', X'4C6',X'433'/
 DATA NVAL/9*0,7,8,9,22,4*0,4,5,5,23,1,2,3,7*,7/
 DATA IFREQ /988250030,988500000,988750000,989J000J0,
C989250000,989500000,989750000,990000000,99025J000.
C990500000,990750000,991000000,991250000,991502000.
C991750000,992000000,97?250000,99250コ000,992750000,
C993000000,993250000,993500000,1041500000,1075500000,
C0,1004500000,1019500000,103650JJ00,105350000J,
C1069500000,1034500000,1153500000,116.3500000,1182500000,
C1197500000,939450000,739550000,?39600000,939550000.
C939700000,937750000,939300000,939350000,93970J000,
C939950000,940000000,740100000,1105000000,0,
C1005500000,1020500000,1037500000,1054500000,137050000N,
C1335500000,1154500000,1159500000,1183500000,1198500000,
C940450000,940550000,940500000,040550000,940703000,
C940750000,940300000,940850000,940900000,94095J000,
C941000000,941100000,1117000000,0.
C1006500000,1321500000,103.8500000,1055500000,
C1071500000,1085500000,1155500000,1170500000,1184500000.
C1199500000,941450000,941550000,941\leqslant00000%,941650000,
C941700000,941750000,9441800000,041850000,94193J000,
c941950000,942000000,942100000,1123000000/
```

ESTABLISH INITIAL CONOITIONS AND BRING PANEL UP IN the 'Panel off' state.
CALL CNTSET
DEFAULTS ARE:
$J F R E Q=1$
PNLON=.FALSE.
DATENT=.FALSE.
MODEJ=.TRUE.
$D P T=. F A L S E$.
NTYPE=O
MODE33=.FALSE.

```
C^LL KTLNR(2,-1)
```

5
Cont IVUE
CALL KTLJR(2,45)
CALL KTLOン: 2, INTRPT)
CALL KTLWA ${ }^{\text {T }}$
WHEN DATA TAKING IS ADDED TO THIS PROGRAM, THE FOLLONING TNO STATEYENTS WILL PUT THE PROGRAM IN A LOOP TO TAKE DATA AND UPDATE THE STATUS OISPLAY WHILE WAITING FOR AN INTERROPT

6 CALL AGDATA
GOTO 6
INTERRUPT ROUTINE
1100 CALL KTLRD(IUNIT, IVALUE)
IF (IUNIT.EQ.2) GO TO 15
IF (IUNIT.EQ.6) GO TO 400
CALL KTLRET

GET A BUTTON \& / CHECK VALID ENTRY/GO TO ROUTINE

15 CALL KTLOFF (6,INTRPT)
NBUT=IVALUE
IF (NBUT.EQ.44)PNLON=.TRUE.
IF (.NOT.PNLON)GO TO 10
IF (NBUT.GT.47.OR.NBUT.LT.1)GO TO 10
1ST COMPUTED GO TO
GO TO $(20,30,40,50,10,10,60,60,60,70,70,70,70,80,80,80$,
C $80,70,70,70,70,70,70,70,80,80,80,80,80,80,70,70,70$,
(90,80,80,80,80,80,80,80,80,80,100,110,115,10), NEUT

## ROUTINE FOR FREQ PLAN BUTTONS

20 JFREQ=1
GO TO 200
30 JFREQ $=2$
GO TO 200
40 JFREQ $=3$
GO TO 200
50 JFREQ $=4$
GOTO 200

```
C
 60 DATENT=.TRUE.
 DPT=.FALSE.
 N=0
 CALL KTLWR(2,47)
 NMSR=0
 NTYPE=NBUT
 IF(NTYPE.NE.9)GO TO 10
 MODEO=.FALSE.
 MODE33=.FALSE.
 GO TO 10
C
C
C
C
 70 IF(.NOT.DATENT)GO TO 10
 IF(NBUT.EQ.33)GO TO 73
 IF(NBUT.EQ.32)GO TO 72
 IF(DPT) :N=N+1
 IVAL=NVAL(N3UT)
 NMBR=NABR*10+IVAL
 GO TO 10
 72 DPT=.TRUE.
 GO TO 10
 73 NMSR=0
 GO TO 10
c
C
c
 80 IF(.NOT.MODEO)GO TO 10
 CALL KTLWR(6,IDOT(NBUT-13))
 GO TO 200
C
C
 WHICH DATA ENTRY BUTTON PUSHED
 90 IF(NTYPE.EQ.7)GO TO 94
 IF(NTYPE.EQ.8)GO T0 96
 If(NTYPE.NE.9)GO TO 10
 MODE=NMBR
 IF(MODE.LT.O.OR.MODE.GT.99)GO TO 10
 IP1=Y'DFOOUOJO'
 IP2=Y'43000000'
 IPS=Y'400J0000'
```

```
 WRITE(3,900)IP1,IP2,IP3,MODE
 900 FORMAT(3A1,'YODE=1,I2)
C
C SELECT THE MODE
c
 IF(MODE.EQ.O)GO TO 91
 IF(MODE.NE.97)GO TO 120
 CALL KTLOFF(2,JUNK)
 CALL KTLOFF(6,JUNK)
 STOP
 91 MODEO=.TRUE.
 GO TO 97
C
C
C SELECT THE CHANNEL NUMBER
C
C
 94 IF(NMBR.GT.23)GO TO 10
 IF(NH3R.LT.O)GO TO 10
 IF(MODE33) LO=(405000J00-IFREQ(VM3R+1,JFREQ)/10-15000000
 IF(.NOT.MODE33) LO= IFREQ(NMBR+1,JFREQ)
 CALL KTLWR(B,LO)
 IF(MODE33)LNKDN=40500JOOO-LO/10
 IF(.NOT.MODEZ3)LNKDN=150000000+LO/10
 LNK1ST=LNKDN/10**6
 LNK2ND=LNKDN-LNK1ST*1000000
 IP1=Y'OFO00000'
 IP2=Y'43000000'
 IP3=Y'480J0000'
 WRITE(3,940)IP1,IP2,IP3,NMBR,LNK1ST,LNK2ND
 940 FORMAT(3A1,'CHAN=1,I2,'CFREQ=',13,',',I6)
 95 IF(MODEO)GO TO 97
 IF (MODE33) GO TO 951
C
C
C
C
C ACQUISITION LOOP NHENEVER CHAN/FREQ CHANGES ARE
C MADE OR THE SYSTEM DROPS OUT OF LOCK.
 NOTE: KTLST(6,JUNK) HAS THE FOLLOWING VALUES
 -1 ---- LOCAL/UNLOCKED
 4 ---- REMOTE/UNLOCKED
 -1 ---- LOCAL/LOCKED
 O ---- REMOTE/LOCKED
 -1 INDICATES AS NOT AVAIL. FOR AUTO MODES
 BEGIN ACQ. SCHEME BY GOING TO APPROPRIATE ACQ. BW
C
```

\$TRCE
IF (M.EQ.1) GO TO 625
$M=1$
DO $620 K=1,10$
CALL KTLWR $(6,0)$
CALL WAITMS (IDLAY)
ISTAT=KTLST (6, JUNK)
LO=LO-ISTEP
CALL KTLPND(IDUYY, INTPND)
IF(INTPND.EQ.1)GO TO 97
CALL KTLNR (8, LO)
IF (ISTAT.EQ.O) GO TO 565
contivue
GO TO 601
c
BLINK THE 'ENTRY REQD' LIGHT TO INDICATE
SEARCH COMPLETE BUT NO SIGNAL FOUND.
625 DO $670 K=1,5$
CALL KTLWR $(2,47)$
\$NTRE
670
CALL WAITMS(200)
CALL KTLWR $(2,-47)$
CALL NAITMS (200)
continue.
IF(L.LT.10)GO TO 600
C **************** END ACQR
951 PNLON=. FALSE.
CALL KTLWP $(2,-44)$
CALL KTLWR $(2,45)$
GO TO 97
C
C SELECT THE CTR FREQ
THERE IS SOME ARITH. IN THIS ROUTINE TO
prevent overflo'd due to large values
96 IF (N.LT.O.OR.N.GT.6)GO TO 10
NEXP=6-N
IF (NEXP.EZ.0) GO TO 962
DO 961 I=1,NEXP
NMBR = NM3R*10
CONTINUE
961
$962 \operatorname{IF}(M O D E 33) \quad L 0=(405000000-N M B R) * 10$
IF (.NOT. MODE33) LO $=(N$ MBR-150000000) *10
CALL KTLNR (8,LO)
LNK 1ST=NM3R/10**6
LNK2ND = NMER-LNK1ST*1000000
IP1 = Y' OFOOOJOO'
IPZ=Y'43000000'

```
 IP3=Y'48000000'
 WRITE(3,960)IP1,IP2,IP3,LNK1ST,LNK2ND
 960 FORMAT (3A1,'CHAN=NA CFREQ=1,I3,'.',I6)
 GO TO 95
 97 CALL KTLWR(2,-47)
 9 8 ~ N T Y P E = 0
 OATENT=.FALSE.
 GO TO 10
C
C ROUTINE FOR PANEL ON
100 CALL KTLWR(2,-45)
 GO TO 200
C
C ROUTINE FOR PANEL OFF
C
 110 PNLON=.FALSE.
 CALL KTLWR(2,-44)
 CALL KTLWR(2,45)
 IF (.NOT.YODEO) CALL KTLON (6,INTRPT)
 GO TO 10
C
C VCO RESET ROUTINE
115 CALL KTLINR(6,0)
 CALL KTLNR(2,46)
 CALL WAITMS(200)
 CALL KTLNR(2,-46)
 GO TO 10
c
C ROUTINES FOR MODES OTHER THAN O
C
 120 IF(MODE.EQ.33)GO TO 333
 IF(MODE.GT.2)GO TO 10
C
C
C
 GO TO (130,140), MODE
C C **** MODE 1 ********* VCO1-3*** IFBW-3*** SQ ***
C
 130 JFREQ=1
 CALL KTLWR(6,IDOT(31))
 CALL KTLWR(2,1)
 CALL KTLWR(2,16)
 CALL KTLWR(2,41)
 CALL KTLWR(2,30)
 ISTEP = 50
 IDLAY = 2000
 GO TO 98
C
C **** MODE 2 ********* VCO2-10
```

C
140 JFREQ=3
CALL KTLWR(6,IDOT(32))
CALL KTLWR(2,3)
CALL KTLWR(2,26)
CALL KTLWR(2,40)
CALL KTLWR(2,30)
ISTEP = SDO
IDLAY = 30UO
GO TO 98
C
C ************ ADD NEW AUTO MODES HERE
C
C LIGHT A LAMP (NBUT)
C
200 CALL KTLWR(2,NSUT)
GO TO 10
C
C YODE33 --- WSC 3 OFFSET MODE
333.00 335 I=14,43
CALL KTLWR(2,-I)
3 3 5 ~ C O N T I V U E ~
MODE33=.TRUE.
GO TO 98
10 CALL KTLEN(2,INTRPT)
CALL KTLRET
END

```
\begin{tabular}{|c|c|c|c|}
\hline \[
K T L
\] & PROG & CONTROL BUS I/O & \[
\begin{aligned}
& \text { (FORTRAN-CALLABLE) - CC } 5-16-7 \\
& \text { REVISION } 1
\end{aligned}
\] \\
\hline * & & & \\
\hline RO & EQU & 0 & \\
\hline R1 & EQU & 1 & \\
\hline R2 & EQU & 2 & \\
\hline R3 & EQU & 3 & \\
\hline R4 & EQU & 4 & \\
\hline R 5 & EQU & 5 & , \\
\hline R6 & EQU & 6 & \\
\hline R 7 & EQU & 7 & \\
\hline R8 & EQU & 8 & \\
\hline R8 & EQU & 11 & \\
\hline SP & EQU & 11 & \\
\hline RC & EQU & 12 & \\
\hline RE & EQU & 14 & \\
\hline RF & EQU & 15 & \\
\hline * & & & \\
\hline * STACK & EQUAT & & \\
\hline STACK & STRUC & & \\
\hline Sive & DS & 64 & Register save area \\
\hline FCN & OS & 1 & SVC11 PARAMETER BLOCK \\
\hline PUN & OS & 1 & \\
\hline STATUS & DS & 1 & \\
\hline DEVADD & OS & 1 & \\
\hline DATA & DS & 4 & \\
\hline SIXBLK & DS & 8 & SVCG PARAMETER BLJCK \\
\hline SIXFCN & DS & 4 & \\
\hline & OS & 2 & \\
\hline SIXSTAT & DS & 2 & \\
\hline & DS & 12 & , \\
\hline DEVMNEM & DS & 4 & \\
\hline & DS & 16 & \\
\hline & ENDS & & \\
\hline * & & & \\
\hline UDL.TSKQ & EQIJ & 16 & ADDRESS OF TASK QUEUE \\
\hline UDL.TSKO & EQU & 112 & TQSI OLD TSW SAVE LOC. \\
\hline UDL. TSKN & EQU & 120 & TQSI NEW TSW LOC. \\
\hline
\end{tabular}

\section*{*}
```

ENTRY KTLPUN, KTLWR,KTLST,KTLPND
ENTRY KTLON,KTLOFF,KTLWAT
ENTRY KTLEN,KTLSIM
ENTRY KTLRD,KTLRET

```

TITLE SUBROUTINE ENTRY AND EXIT PROCEDURES
\begin{tabular}{lll}
* ENTER & & \\
* & & \\
& SHI & RC,STACK \\
& STY & RO,SAVE(RC)
\end{tabular}

LOCAL SURROUTINE
BUMP R12 STACK POINTER
SAVE CALLER'S REGISTERS
\begin{tabular}{|c|c|c|c|}
\hline & LR & SP,RC & STACK POINTER TO R11 \\
\hline \multirow[t]{3}{*}{ENTER2} & LIS & RO, 5 & \\
\hline & CH & RO, O (RF) & LOOK AT NO. OF PARAMETERS \\
\hline & BNZ & 0 & IF \(2 *(N+1)\) NOT \(=5\), CRASH \\
\hline \multirow[t]{8}{*}{} & & THERE MAY OR MAY & NOT BE A HALFNORD FILLER \\
\hline & & FOLLONING THE NO & -OF-PARAMETERS HALFNORD: \\
\hline & NHI & RF, \({ }^{\prime}\) 'FFFC' & MASK TO NEXT LOWER FULLHD \\
\hline & L & R6,4 (RF) & R6 HAS \(15 T\) ADDRESS PASSED \\
\hline & \(L\) & R4,0(R6) & R4 HAS UNIT NUMGE? \\
\hline & \(L\) & R7,8(RF) & R7 HAS 2 ND ADDRESS PASSED \\
\hline & \(L\) & R5,0(R7) & R5 HAS VALUE \\
\hline & RR & RE & RETURN TO MAIN ROUTINE \\
\hline \multicolumn{4}{|l|}{*} \\
\hline \multicolumn{4}{|l|}{\(\star\)} \\
\hline \multicolumn{4}{|l|}{*} \\
\hline \multirow[t]{4}{*}{EXIT} & EQU & * & LOCAL SUBROUTINE \\
\hline & ST & RD, 4 *RE (SP) & STATUS - CALLER'S R14 \\
\hline & L.M & PD, SAVE (SP) & LOAD CALLER'S REGISTERS \\
\hline & AHI & RC,STACK & POP STACK POINTER \\
\hline \multirow[t]{3}{*}{EXIT2} & AIS & QF, 12 & BUMP RETURN ADDRESS \\
\hline & NHI & QF, \({ }^{\prime}\) 'FFFC' & MASK TO NEXT LOWER FULLWD \\
\hline & BR & RF & RETURN TO CALLER JF KTL. \\
\hline
\end{tabular}
title main ktl routines, non-Interrupt
KTLPUN EQU *

BAL RE,ENTER
```

LIS RO,O
BAL R8,SVC11
LB R1,DEVADD(SP)
ST R1,O(R6)
B EXIT

```
*
KTLWR EQU *
BAL RE,ENTER
LIS RO, 1 WRITE FCN
BAL R8,SVC11
\(B\) EXIT

\section*{*}

KTLST EQU
BAL RE,ENTER
\(\begin{array}{ll}\text { LIS } & \text { RO, } \\ \text { BAL } & \text { R8,SVC11 }\end{array}\)

PUN FCN
DO THE SVC11
LOAD THE RETURNED NO.
RETURV IT AS UVIT NO.
RETURN TO CALLER

WRITE FCN
DO THE SVC11
RETURN TO CALLER
\begin{tabular}{|c|c|c|c|}
\hline & L & R1, DATA (SP) & Load returned value \\
\hline & CHI & RO, 3 & LOOK AT STATUS \\
\hline & BNZ & STAT1 & SKIP IF NOT OFF-LINE \\
\hline & LCS & RO. 1 & RETURN STATUS -1 AS KTLST \\
\hline & LCS & R.1,1 & RETURN -1 AS value \\
\hline \multirow[t]{2}{*}{STAT1} & ST & R1.J(R7) & Stope data in valije \\
\hline & 8 & EXIT & RETURN TO CALLER \\
\hline \multicolumn{4}{|l|}{* \({ }^{\text {a }}\)} \\
\hline & & & \\
\hline \multirow[t]{5}{*}{KTLPND} & EQU & * & \\
\hline & BAL & RE, ENTER & \\
\hline & LH & RD, TASKQ + 2 & FCN = NO OF ENTRIES QUEUED \\
\hline & LR & R1,R0 & RETURN AS VALUE, TOO \\
\hline & B & STAT1 & RETURV \\
\hline \multicolumn{4}{|l|}{*} \\
\hline \multicolumn{4}{|l|}{*} \\
\hline & TITLE & MAIN KTL ROUTINES, & INTERRUPT-RELATED \\
\hline \multicolumn{4}{|l|}{*} \\
\hline & ALIGN & 4 & \\
\hline TASKQ & DLIST & 10 & define a task queve \\
\hline \multirow[t]{2}{*}{TQEN} & DC & Y'08008000' & ENABLE TQ ENTRY AVD TRAP \\
\hline & DAC & 0 & LOC. COUNTER, \(\Rightarrow\) RETURN \\
\hline \multicolumn{4}{|l|}{*} \\
\hline \multicolumn{4}{|l|}{*} \\
\hline \multirow[t]{12}{*}{KTLON} & EQU & TURN & ON CONNECTION TO A DEVICE \\
\hline & BAL & RE, ENTER & \\
\hline & L & R1, UDL.TSKO & LOAD ADDR OF TASK QUEUE \\
\hline & BNZ & HAVEQ & Skip if have *a queue \\
\hline & LI & R2.TASKQ & ADDR OF QUEUE DEFINED HERE \\
\hline & ST & R2, UDL. TSKQ & Store it a t queue pointer \\
\hline & LI & RO, Y'AOOOO' & SIzE Of queue \\
\hline & ST & RO, O(R2) & Store it in queue \\
\hline & LIS & RO. 0 & NUMBER NOW ON QUEJE \\
\hline & ST & R0, 4 (R1) & Store it in queue \\
\hline & LI & R2,Y'8000' & NEW TSW: ENABLE TQ ENTPY \\
\hline & ST & R2,UDL.TSKN & STORE AS TSW DURING INT. \\
\hline \multicolumn{4}{|l|}{*} \\
\hline \multirow[t]{6}{*}{HAVEQ} & EQU & * N0 & now have valid task queve \\
\hline & LI & R2. INTVEC & ADDRFSS OF INT. HANDLER \\
\hline & ST & R2,UDL.TSKN+4 & STORE PTR TO INT. ROUTINE \\
\hline & ST & RS, JSRINT & SAVE USER ROUTIVE ADDR \\
\hline & LI & R3, Y'COOO8000' & CONNECT SELF SVCG FUNCTION \\
\hline & BAL & R8, SVC6 & CONVECT TASK TO DEVICE \\
\hline & SVC & & enable task interrupts \\
\hline & LIS & RO. 3 & ENABLE-INT. SVC11 FUNCTION \\
\hline & B & D011 & do svcil to menale int. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{KTLOFF} & EQU & \multicolumn{2}{|r|}{TURN OFF CONNECTION TO DEVICE} \\
\hline & BAL & RE, ENTER & \\
\hline & LI & R3, Y'COOOO800' & DISCONNECT SELF SVCG FCN \\
\hline & BAL & R8, SVC6 & DISCONNECT TASK FROM DEV. \\
\hline & LIS & R 0, 4 & DISA3LE-IVT. SVC11 FCN \\
\hline \multirow[t]{3}{*}{D011} & BAL & R8, SVC11 & DO SVC11 TO DISABLE INT. \\
\hline & LR & RO,R3 & RETURN SVC 6 STATJS \\
\hline & B & EXIT & RETURN TO CALLER \\
\hline \multicolumn{4}{|l|}{*} \\
\hline KTLWAT & EQU & * & WAIT FOR TASK TRAP \\
\hline \(\star\) & SVC & 9,TSNAIT & LOAD A WAITING TASK STATUS \\
\hline \multicolumn{2}{|r|}{ALIGN 4} & & \\
\hline TSNAIT & DC & Y'88008000' & ENABLE DEVICE-GENERATED \\
\hline * & & \multicolumn{2}{|l|}{QUEUE ENTRIES, SERVICE TRAPS, \& MAIT} \\
\hline \multirow[t]{6}{*}{KTLSIM} & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{*}} \\
\hline & EQU & & \\
\hline & BAL & RE, ENTER & \\
\hline & LIS & RO. 5 & SIMULATE-INTERRUPT FCN \\
\hline & BAL & R8,SVC11 & DO THE SVC11 \\
\hline & \(B\) & EXIT & RETURN TO CALLER \\
\hline \multicolumn{4}{|l|}{* TITE SU3ROUTINES TO DO SVC 6 AND 11 CALLS} \\
\hline \multirow[t]{5}{*}{DUMNO} & EQU & * & TABLE OF DUMMY DCZ NO'S \\
\hline & D3 & 9,0,1,9 & \multirow[t]{4}{*}{AS FUNCTION OF PUV} \\
\hline & D3 & 2,9,3.9 & \\
\hline & DB & 9,9,4,9 & \\
\hline & \(D B\) & 4.9 & \\
\hline \multicolumn{4}{|l|}{* \({ }^{\text {* }}\)} \\
\hline & ALIGN & 2 & \\
\hline \multirow[t]{8}{*}{SVC6} & EQU & * & LOCAL SURROUTINE \\
\hline & LB & RO, DUMNO(R4) & LOAD DUMMY NO. \\
\hline & A I & RO,C'OUMO' & FORM DUMMY NAME \\
\hline & ST & RO, DEVMNEM(SP) & STORE IT IN PARAY BLOCK \\
\hline & ST & R3, SIXFCN(SP) & STORE FUNCTION \\
\hline & SVC & 6, SIXPLK (SP) & DO SVCG CONNECT/DISCONNECT \\
\hline & LH & R3,SIXSTAT(SP) & LOAD SVCG STATUS \\
\hline & BR & R8 & RETURN \\
\hline
\end{tabular}

\begin{tabular}{lll}
& LM & RO,RSAVE
\end{tabular}\(\quad\) RELOAD INTERRUPTEE'S REG
```

C WAITMS : SUBROUTINE TO DELAY THE CALLER
C WAITMS HAS ONE CALLING PARAMETER, THE LENGTH OF TIME,
C IN MILLISECONDS, THAT THE CALLER'S TASK IS TO BE
C
C
C
SURROUTINE WAITMS (MS)
INTEGER MS
C
$I=M S$
\#ASSM
ST 11,PARAM
SVC 2,BLOCK
BS DONE
ALIGN 4
BLOCK DB 0.11
PARAM DCF O
DONE EQU *
SFORT
END

```

\section*{APPENDIX B－DATA PROGRAMS}

THIS PROGRAM IS TO HANDLE DATA FOR THE PRIMARY RECEIVER．

INITIALIZE BUS AND COUNTER

CALL HPCMD（？UZのE8E2）
CALL WAIT

ENTER THE NYBR FOR THE DESIRED CNTIME
5 FORMAT ('ENTER CNTIME 1,2,3,4,5, OR 6)
 READ (5,10)L
 10 FORYAT (I1)
 SET COUNTER TO DESIRED CNTIME
 CALL HPCMD (CNTIME(L))
 CALL WAIT
 read the counter
20 CALL HPCMD (?UR)
 CALL WAIT
 CALL HPDATA (CNT)
 CALL WAIT
use counter value to calculate signal freq
AND DISPLAY RESULT ON STAT.
THIS CALC. WILL CHANGE FOR EACH CNTIME DUE
TO THE RETURNED VALUF NUMBER OF SIG. DIGITS.
CURRENT CALC. IS A DUMMY
```

            RF=CNT*200
            IP1= Y'OFODOOOO'
            IPZ=Y'45000000'
            IP 3=Y'40000000'
            WRITE (3,50J)IP1,IP2,IP3,RF
    500 FORMAT (3A1,'SIGNAL = ',F11.7)
            DELAY THEN READ COUNTER AND UPDATE DISPLAY
            DO 505 I=1,500000
    505 CONTINUE
    GO TO 20
    END
    ```
THE PURPOSE OF THIS SUBROUTINE IS TO INITIALIZE
THE MAIN RECEIVER COUNTER.
the subroutine is under file name cntset.ftn.
```

subrouTINE CNTSET
INTEGER CODE(4)
CODE(1)='?UZ,'
CODE(2)='ESE1'
CODE(3)='E2GO'
CODE(4)=''
CALL HPCMD(CODE)
CALL WAIT
RETURV
END

```
```

SUBROUTINE CNTDTA(CNT)
INTEGER CODE(4)
CODE(1)=1?,5S'
CODE(2)=1'
CODE(3)=1'
CODE(4)=1'
CALL HPCMD(CODE)
CALL WAIT
CALL HPDATA(CNT)
CALL WAIT
RETURN
END

```
```

            this suzroutine reads the time
    IT IS UNDER FILE NAME TIME.fTN
SUgROUTINE TIME(T)
INTEGER CODE(4)
CODE(1)=1?J5'
CODE(2)=1
CODE(3)=1'
CODE(4)=1'
CALL HPCMD(CODE)
CALL NAIT
CALL HPDATA(T)
CALL WAIT
RETURN
END

```
c
c

THE PURPOSE OF THIS SUGROUTINE IS TO WRITE COMMANDS to the main receiver counter to cause it to go to THE DESIRED COUNT PERIOD.

THE FILE NAME FOR THIS SUBROUTIVE IS CNTIME.fTN.
```

    SUBROUTINE CNTIME(K)
    ```
 INTEGER CODE(4)
 \(\operatorname{CODE}(1)=1 ? \cup 2,1\)
 \(\operatorname{CODE}(3)=1 \cdot\)
 \(\operatorname{CODE}(4)=1:\)
 GO TO \((10,20,30,40,50,60), K\)
 GO TO 80
 \(\operatorname{CODE}(2)=1 G Z^{\prime}\)
 GO 1070
 \(\operatorname{CODE}(2)=\mathrm{I}^{\prime} 1^{\prime}\)
 GOTO 70
 \(\operatorname{CODE}(2)=1601\)
 GO TO 70
 CODE(2)=1G?'
 GO TO 70
 \(\operatorname{CODE}(2)=1 \mathrm{G}>1\)
 GOTO 70
 \(\operatorname{CODE}(2)=1 \mathrm{G}=1\)
 GO TO 70
 CALL HPCMD (CODE)
 CALL WAIT
\(c\) THE HF 9830.

SUEROUTINE HPCMD (CODE)
IVTEGER CODE(4)
ITYPE='1'
100
110
WRITE 5,110) ITYPE,CODE
FORMAT (A1,4A4)
```

SUBROUTINE HPCMD TRANSFERS COMMANDS TO THE HP GUS THROUGH

```

RETURN
END
c
C SUBROUTINE HPDATA READS DAYA FROI THE SUS

SIJRROUTINE HPDATA(DATA) INTEGER DATA(18)
ITYPE=131
300
310
320
330
 WRITE 5,310) ITYPE
 FORMAT (A1)
 READ 5.330\()\) DATA
 FORMAT (1844)
 RETUR:!
 END

C \(c\) 6
this subroutive causes the system to wait until the HP 9830 HAS COMPLETED ITS TASK.
surroutine dait
PEAD \((5,50)\) iv
FORMAT (A1)
If (N.EQ.'5') GO TO 70
GO TO 40
DO \(100 \quad \mathrm{I}=1.5000\)
CONTINUE
RETURN
END
```

10 REM
20 REM
30 REM
THE PURPOSE OF THIS PROGRAM IS TO ALLOW THE HP
9830
40 REM DIMENSION THE STRING VARIABLES TO BE USED
50 DIM A${72},B${72},C${72},D${72},E${72}
6 0 ~ R E M
70 REM SET UP THE SYSTEM FOR THE DATACOMM LINK
80 REM
90 SYSTEM 1,9600,8,NONE,ASY2,FD
l00 EOT 15
llO TON l
120 REM
130 REM INITIALIZE THE BUS
140 REM
150 CMD "?U.8*"
160 FORMAT B
170 OUTPUT (13,160)768;
180 CMD "?U"
190 FORMAT 3B
200 OUTPUT (13,190)256,25,5l2;
2l0 REM
220 REM READ THE INTERDATA MT 7/32
230 REM
240 TREAD( l,ASC)A$
250 REM
260 REM DETERMINE WHAT THE 7/32 WANTS TO DO
270 REM
280 B$=A${1,1}
290 IF B$="l" THEN 360
300 IF B$="2" THEN 540
310 IF B$="3" THEN 620
320 GOTO 240
330 REM
340 REM ROUTINE FOR THE CMD
350 REM
360 A=POS (AS,",")
370 IF A=0 THEN 460
380 B=A-1
390 C$=A${2,B}
400 C=A+1
4 1 0 ~ S = L E N ~ ( A S ) - 1 ~
420 D$=A${O,S }
430 CMD C$,D\$
440 TWRITE( l,ASC)"5",15,
4 5 0 GOTO 240
4 6 0 ~ S = L E N ~ ( A \$ ) - 1
470 C$=A${2,S}
480 CMD C\$

```
```

490 TWRITE( 1,ASC)"5",15,
500 GOTO 240
510 REM
520 REM ROUTINE TO CHECK THE BUS STATUS
530 REM
540 IF (STATl3=0) THEN 570
550 TWRITE( l,ASC)"0",15,
560 GOTO 240
570 TWRITE( l,ASC)"l",15,
580 GOTO 240
590 REM
600 REM ROUTINE TO ENTER DATA FROM THE BUS
6 1 0 ~ R E M
620 ENTER (13,*)E\$
630 WAIT 50
640 TWRITE( l,ASC)E\$
645 WAIT 50
650 WAIT 50
660 TWRITE( 1,ASC)"5"
6 7 0 GOTO 240
6-0 END

```
```

APPENDIX C - ACRONYMS AND MNEMONICS

```

This appendix contains a list of the acronyms and mnemonics used throughout this report and the appended programs.

C2
A6
A7
A8
LFBW
IFBW
VCO
S/S
N/SQ
MGC
PLI
C20P
LO
PNLON
PNLOFF
DATENT
DPT
IDOT
NVAL
IFREQ
JFREQ
NTYPE
NBUT
NMBR
CHAN
CFREQ
ISTAT

\section*{APPENDIX C (con't)}
\begin{tabular}{ll}
ISTEP & Variable to Specify LO Step Size in Acquisition \\
IP1,IP2,IP3 & Variables to Position Display on CRT \\
CNT & Variable for Frequency Counter Reading \\
\(T\) & Variable for Time \\
STAT & Display CRT at Operator's Console \\
CNTIME & Gating Time for Frequency Counter \\
CODE () & ASCII Variable to Control Frequency Counter \\
IDLAY & Variable to Specify LO Step Delays Durıng
\end{tabular}

\section*{LIST OF REFERENCES}
1. Naval Postgraduate School Technical Report NPS-52AB76031, Evaluation of the AS-3018/WSC-1(V) Shipboard SATCOM Antenna, by R. W. Adler, J. E. Ohlson and B. K. Hollar, March] 976.
2. Naval Postgraduate School Technical Report NPS-620L76105, Deck Boxes for UHF SATCOM Radio Frequency Interference Study, by G. B. Parker and J. E. Ohlson, October 1976.
3. Naval Postgraduate School Technica 1 Report NPS-620L76106, A High Level Noise Blanker and RF Amplifier Systems for the UHF Band, by F. E. Mace, Jr., and J. E. Ohlson, October 1976.
4. Naval Postgraduate School Technical Report NPS-620L76107, A Level Density Analyzer for Shipboard RFI Measurements, by D. C. Arneson and J. E. Ohlson, October 1976.
5. Naval Postgraduate School Technical Report NPS-620L76108, Instrumentation Package for Measurement of Shipboard RFI, by A. R. Shuff and J. E. Ohlson, October 1976.
6. Naval Postgraduate School Technical Report NPS-620L76103, Shipboard Radio Frequency Intereference in UHF Satellite Communications (U), by J. E. Ohlson and T. C. Landry, Confidential, October 1976.
7. Naval Postgraduate School Technical Report NPS-620L76109, A Simulator for Shipboard Radio Frequency Interference in Satellite communications, by E. S. Brick and J. E. Ohlson, October 1976.
8. Naval Postgraduate School Technical Report NPS-620L76091, Receiver Desensitization of the AN/WSC-3 Satellite Communications Set (U), by R. F. Carlson and J. E. Ohlson, Confidential, September 1976.
9. Naval Postgraduate School Technical Report NPS-620L76101, Receiver Densensitization of the AN/SSR-1 Satellite Communıcations Receiver (U), by R. F. Carlson and J. E. Ohlson, Confidential, October 1976.
10. Naval Postgraduate School Technical Report NPS-620L76102, Bit-Error Rate Measurements on the AN/WSC-3 and AN/SSR-1 Satellite Communications Sets, by R. F. Carlson and J. E. Ohlson, Confidential, October 1976.

\section*{LIST OF REFERENCES (con't)}
11. Naval Postgraduate School Technical Report NPS-62-78-001, Digital Control and Processing for a Satellite Communications Monitoring System, by G. W. Bohannon and J. E. Ohlson, September 1977.
12. Naval Postgraduate School Technical Report NPS-62-78-002, Receiver Design for the Naval Postgraduate School SATCOM Signal Analyzer, by C. B. Williams and J. E. Ohlson, September 1977.
13. Naval Postgraduate School Technical Report NPS-62-78-004PR, Hardware Development for a Satellite Signal Analyzer, by J. D. Zuber and J. E. Ohlson, December 1977.
14. Naval Postgraduate School Thesis, System Development for Satellite Oscillator Stability Measurements, by B. G. Edgington, June 1978.
15. SATCOM Signal Analyzer System Source Library.
1. Commander
8
(Attn: E. L. Warden, PME-106-112A)
Naval Electronic Systems Command
Department of the Navy
Washington, D.C. 20360
2. Commander 1
(Attn: W. C. Willis, PME-l06-11)
Naval Electronic Systems Command
Department of the Navy
Washington, D.C. 20360
3. Commander
(Attn: W. R. Coffman, PME-106-16)
Naval Electronic Systems Command
Department of the Navy
Washington, D.C. 20360
4. Library 2
Naval Postgraduate School
Monterey, California 93940
5. Office of Research Administration (012A)
Naval Postgraduate School
Monterey, California 93940
6. Professor John E. Ohlson
Code 620L
Naval Postgraduate School
Monterey, California 93940
7. Commander
(Attn: LT Gary W. Bohannon, G60)
Naval Security Group
3810 Nebraska Avenue, N.W.
Washington, D.C. 20390
8. Commander 1
(Attn: Robert S. Trible, 0252)
Naval Electronic Systems Engineering Activity (NESEA)
Patuxent River, Maryland 20670

\section*{U191265}```

